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ABSTRACT
Of the many factors that contribute to communication performance, perhaps one

of the least investigated is that of message-buffer alignment. Although the generally
accepted practice is to page-align buffer memory for best performance, our studies show
that the actual relationship of buffer alignment to communication performance cannot
be expressed with such a simple formula. This paper presents a case study in which
porting a simple network performance test from one language to another resulted in a
large performance discrepancy even though both versions of the code consist primarily
of calls to messaging-layer functions. Careful analysis of the two code versions revealed
that the discrepancy relates to the alignment in memory of the message buffers. Fur-
ther investigation revealed some surprising results about the impact of message-buffer
alignment on communication performance: (1) different networks and node architectures
prefer different buffer alignments; (2) page-aligned memory does not always give the best
possible performance, and, in some cases, actually yields the worst possible performance;
and, (3) on some systems, the most significant factor affecting network performance is
the relative alignment of send and receive buffers with respect to each other.

Keywords: Data alignment, network performance, coNCePTuaL

1. Introduction

Network and messaging-layer performance tests are used for a variety of pur-
poses, such as explaining or predicting system and application performance, monitor-
ing improvements made during system deployment or messaging-layer development,
and evaluating systems for purchase. Although there exist numerous ready-made
communication microbenchmarks (e.g., the Pallas MPI Benchmarks [1], SKaMPI [2],
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NetPIPE [3], and Mpptest [4]), there still exists a need for special-purpose, cus-
tomized network performance tests. Special-purpose performance tests serve two
important purposes: they help characterize and diagnose performance anomalies re-
ported by more general-purpose tests; and, they can reproduce application-specific
communication patterns, thereby providing insight into application performance.

coNCePTuaL [5] is a tool designed to simplify the acquisition and presenta-
tion of network performance data. The added benefits in simplicity, readability, and
portability provided by coNCePTuaL made it worthwhile for the authors to port
to coNCePTuaL a suite of existing performance tests used internally by the Per-
formance and Architecture Lab (PAL) at Los Alamos National Laboratory. It was
crucial that the coNCePTuaL versions exactly reproduce PAL’s original C +MPI
tests in order to fairly compare new measurements against historical data.

In fact, however, we observed a performance discrepancy between the two ver-
sions. Section 2 describes the problem and the initial steps taken to identify its
cause. Section 3 explains how we exploited coNCePTuaL’s ability to rapidly pro-
duce “disposable” special-purpose performance tests in order to drill down to the
source of the problem and more precisely characterize various clusters’ sensitivity
to it. We relate our results to those found by others in Section 4. In Section 5
we present some avenues for follow-on research. Finally, we draw some conclusions
from our discoveries in Section 6.

2. Simplifying Performance Testing

The Performance and Architecture Lab has been using an in-house suite of
C +MPI network performance tests for many years. Because these tests have been
in existence for a long time and have been run on a multitude of systems their results
are well understood and are used as a historical reference against which future
results can be compared. Although the test suite adequately performs the job it was
meant to do, a coNCePTuaL [5] port would have a number of advantages including
(1) the automatic production of “laboratory notebook” log files that include not just
measurement data but also detailed information about the experimental setup [6];
(2) portability across messaging layers; and, (3) an enhanced ability to describe
performance tests by treating coNCePTuaL programs, with their English-like
syntax, as “executable pseudocode”.

One of the first such tests we ported from C to coNCePTuaL was a basic ping-
pong bandwidth test that measures bandwidth by repeatedly sending a message
back-and-forth between two nodes and dividing the total number of bytes trans-
mitted by the total time and reporting the result in bytes per microsecond (B/µs).
The coNCePTuaL port aimed to replicate exactly the original C benchmark. The
coNCePTuaL rewrite of the C benchmark is shown in its entirety in Listing 1.

The following is a brief description of the code. The first four statements of List-
ing 1 define command-line parameters and their default values. The main routine
consists of a let statement (line 9) which binds the value of several variables for use

http://www.c3.lanl.gov/par_arch/
http://www.c3.lanl.gov/par_arch/
http://www.lanl.gov/
http://www.c3.lanl.gov/par_arch/
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Listing 1. A coNCePTuaL ping-pong bandwidth test.

1 reps i s "Number o f r e p e t i t i o n s " and comes from "--repetitions" or "-r"
with default 10000 .

2

3 minbytes i s " Smal l e s t number o f bytes to send" and comes from
"--minbytes" or "-m" with default 0 .

4

5 maxbytes i s " Largest number o f bytes to send" and comes from
"–maxbytes" or "-x" with default 512K.

6

7 i n c i s "Number o f bytes to increment s i z e o f packet by a f t e r each
s e t o f i t e r a t i o n s (0 means geometr ic p r og r e s s i on ) " and comes
from "--inc" or "-i" with default 0 .

8

9 Let mu l t i p l i e r be 1 i f inc<>0 otherwise 2 and
10 s e q s t a r t be 1 i f ( minbytes=0 /\ inc=0) otherwise ( minbytes∗

mu l t i p l i e r + inc ) while
11 for each msgs ize in {minbytes } , { s eq s ta r t , s e q s t a r t ∗ mu l t i p l i e r +

inc , ( s e q s t a r t ∗ mu l t i p l i e r + inc ) ∗ mu l t i p l i e r + inc , . . . ,
maxbytes}

12 {
13 a l l tasks synchronize then
14 task 0 resets i t s counters then
15 for reps repetitions
16 {
17 task 0 sends a msgs ize byte message to task 1 then
18 task 1 sends a msgs ize byte message to task 0
19 }
20 then task 0 logs msgs ize as "Message S i z e ( bytes ) " and

e lapsed_usecs /(2∗ reps ) as "1/2 RTT ( us ) " and ( reps ∗msgs ize )
/( e lapsed_usecs /2) as "BW (B/us ) "

21 }

in the subsequent loop nest. The outer for loop (line 11) determines the message
sizes that the inner loop will use in its communications. The loop variable, msg-
size, first takes on the value of the singleton {minbytes} followed by the numbers
from seqstart to maxbytes in either an arithmetic or geometric progression (based
on whether inc is 0). minbytes is handled separately in case the user sets it to 0
and specifies a geometric progression. With the default parameters, msgsize takes
on the values 0, 1, 2, 4, . . . , 524288. Line 13 performs a global barrier operation.
Line 14 makes task 0 reset its elapsed-time counter, byte counter, message counter,
and other such counters. The program’s inner loop (line 15) performs the actual
ping-pong operations. The last statement in the program (line 20) tells coNCeP-
TuaL to log several things to a file, including the size of the message in bytes, the
average time in microseconds it took to send it (i.e., half of the round-trip time), and
the bandwidth achieved in terms of bytes per microsecond (B/µs). See the coN-
CePTuaL User’s Guide [7] for a more thorough explanation of the coNCePTuaL
grammar.

As the ping-pong bandwidth test was simply a port of an existing program,
the performance of the C and coNCePTuaL versions should have been identical.
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Table 1. List of clusters tested and their specifications.

Cluster name CPU I/O bus Network(count, speed, model) (model, bits, MHz)

IA-64/Elan 3 2 × 1.3 GHz Itanium 2 PCI 64/66 QsNet
(also IA-64/GigE) GigE
IA-32/Elan 3 2 × 1.13 GHz Pentium III PCI 32/33 QsNet
x86-64/Elan 4 2 × 2 GHz Opteron PCI-X 64/133 QsNetII
IA-32/IBA 2 × 2.2 GHz Xeon PCI-X 64/100 IBA 4X
IA-32/Myri 2 × 1 GHz Pentium III PCI 64/33 Myrinet
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Fig. 1. Two runs of a ping-pong bandwidth test

To verify that this was indeed the case, the coNCePTuaL code and the original
C benchmark were run on the same set of machines, part of an Itanium 2 cluster
interconnected with a Quadrics QsNet (Elan 3/Elite 3) network [8]. Table 1 presents
the key characteristics of all of the clusters used in the preparation of this paper;
the current discussion refers to the “IA-64/Elan 3” cluster listed in that table. The
results of the run are shown in Figure 1(a). As is evident from the graph, although
the results match to around 1,024 bytes they diverge from that point on, ultimately
resulting in a performance discrepancy of 34 B/µs or 16%. Interestingly, on a cluster
with a different CPU and node architecture but the same network (Table 1’s IA-32/
Elan 3 cluster), the C and coNCePTuaL versions of the performance test yield
qualitatively identical measurements (Figure 1(b)).

To track down the source of the performance discrepancy between the C and
coNCePTuaL versions of the test, we migrated chunks of code from the hand-
coded test into the coNCePTuaL-generated C code until the two versions of the
performance test yielded the same performance. The linchpin turned out to be the
rather innocuous memory-allocation code shown in Listing 2. When the coNCeP-
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Listing 2. Memory allocation in the C version of the ping-pong performance test

1 i f ( ( rbuf = (char ∗) mal loc (maxNob ? maxNob : 8) ) == NULL)
2 {
3 pe r ro r ( " Fa i l ed memory a l l o c a t i o n " ) ;
4 e x i t (1 ) ;
5 }
6

7 i f ( ( tbuf = (char ∗) mal loc (maxNob ? maxNob : 8) ) == NULL)
8 {
9 pe r ro r ( " Fa i l ed memory a l l o c a t i o n " ) ;

10 e x i t (1 ) ;
11 }
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Fig. 2. Benchmark results with page-aligned memory on the IA-64/Elan 3 cluster

TuaL version of the test used the exact code shown in Listing 2 its performance
matched the C version’s. When it used its own—functionally equivalent—code its
performance dropped by 34 B/µs. In addition, swapping the order of the two if
statements in Listing 2 causes the hand-coded C version to lose 34 B/µs. Clearly,
the performance test is sensitive to some subtle aspect of how memory is being
allocated.

We hypothesized that the alignment in memory of the message buffers might
be different between the code versions and that that might be the source of the
performance discrepancy. To test this hypothesis, we rewrote the performance
tests to page-align their message buffers by allocating them with valloc() instead
of malloc(). When all communication buffers are page-aligned both the C and
coNCePTuaL versions observe the same performance on the IA-64/Elan 3 cluster,
as shown in Figure 2. But there’s a catch: both observe the same poor performance.
Contrast Figure 2 with Figure 1(b)—data taken from a cluster with slower nodes.
Because performance is different when running with page-aligned buffers (Figure 2)
and without them (Figure 1(a)) we can conclude that buffer alignment does play a
role in performance. However, it is striking that page-alignment yields suboptimal
performance. In the following section we further investigate this phenomenon.
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3. Memory Alignment

Although the results of the C and coNCePTuaL versions of the ping-pong
performance test now matched on both platforms, page-aligning the memory of the
C benchmark actually decreased its performance. This surprising outcome led us to
question whether the effect is specific to the IA-64/Elan 3 cluster or if it is a more
widespread problem. In addition, we wanted to gain a deeper understanding of the
relationship between message-buffer alignment and communication performance.

3.1. Analysis of buffer alignment’s effect on performance

coNCePTuaL is an ideal vehicle for carrying out such a study because it was
designed to facilitate the rapid production of special-purpose performance tests. In
fact, the language provides two keywords that are particularly apropos to alignment
testing:

aligned Force the virtual address of a message buffer to be aligned at a multiple
of a given number. For example, a “100 byte aligned message” can lie at
addresses 0, 100, 200, 300, etc.

misaligned Force the virtual address of a message buffer to be misaligned from a
page boundary by a given offset. On IA-32 and x86-64 systems a page is 4KB;
on IA-64 systems a page is 16 KB. For example, a “100 byte misaligned
message” on IA-32/Elan 3 can lie at addresses 100, 4196, 8292, 12388, etc.

The test we devised for measuring a network’s sensitivity to buffer alignment
is presented in its entirety in Listings 3–5. The first part of the test, Listing 3,
measures ping-pong bandwidth when the send and receive buffers are aligned equally,
meaning that each is aligned to a multiple of the alignment variable which ranges in
4-byte increments from 0 to maxalign. The second and third parts of the test—still
within the loop over alignment—respectively page-align the receive buffers while
varying how much the send buffers are misaligned (Listing 4) and page-align the
send buffers while varying how much the receive buffers are misaligned (Listing 5).
Between tests, the program touches (i.e., reads and writes) every word of a large
memory region in order to flush the system’s various memory caches.

One aspect of coNCePTuaL that may need some explanation is that send
statements implicitly post a matching receive with matching parameters. The
unsuspecting keyword suppresses the implicit receive. Listings 4–5 use unsus-
pecting to specify different alignment parameters for the sender and receiver.a

All of the graphs of alignment results in this section are presented in pairs. The
first graph in each pair starts the y axis at 0 B/µs so as not to exaggerate the
impact of varying buffer alignments. The second graph in each pair provides a
close-up look at the range of values actually observed in order to emphasize details
aA relatively recent addition to coNCePTuaL achieves the same effect using more natural se-
mantics, as will be seen in Listing 6.
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Listing 3. coNCePTuaL memory-alignment test (Part 1 of 3: equal alignment)

1 reps i s "Number o f r e p e t i t i o n s " and comes from "--repetitions" or "-r"
with default 1000 .

2

3 maxalign i s "Maximum alignment /misal ignment to t e s t with" and comes
from "--maxalign" or "-m" with default 256 .

4

5 msgs ize i s " S i z e o f message to t e s t with" and comes from "--size" or
"-s" with default 512K.

6

7 For each al ignment in {0 , 4 , 8 , 12 , . . . , maxalign}
8 {
9 a l l tasks synchronize then

10 task 0 resets i t s counters then
11

12 # Test the e f f e c t s o f vary ing equa l a l ignment .
13 for reps repetitions
14 {
15 task 0 sends a msgs ize byte al ignment byte aligned message to

task 1 then
16 task 1 sends a msgs ize byte al ignment byte aligned message to

task 0
17 }
18 then task 0 logs msgs ize as "Message s i z e ( bytes ) " and al ignment

as "Alignment ( bytes ) " and ( msgs ize ∗ reps ∗2) / e lapsed_usecs as
" a l i gned BW (B/us ) " then

that are not apparent from the long-range view. To improve readability, all x axes
range from 0 to 256 bytes, not to the full page size; when relevant, the text describes
the graph beyond the 256-byte limit. Each graph contains three curves: Equally
aligned, in which both the send buffer and the receive buffer lie at a virtual address
that is a multiple of the value on the x axis; Send buffer misaligned, in which the
receive buffer is page-aligned and the send buffer lies at a virtual address x bytes
past a page boundary; and, Receive buffer misaligned, in which the send buffer is
page-aligned and the receive buffer lies at a virtual address x bytes past a page
boundary. Note that both buffers being page-aligned is represented by x = 0 on the
Send buffer misaligned and Receive buffer misaligned curves. All experiments used
the network vendor’s MPI implementation, generally an MPICH [9] derivative.

The first set of results presented are for the IA-64/Elan 3 and IA-32/Elan 3
clusters (Figures 3 and 4). Figure 3 confirms the observations made in Section 2:
performance on the IA-64/Elan 3 cluster varies by 36 B/µs (180–216 B/µs) based
on the alignment of the message buffers; and, page-aligned buffers yield bandwidths
near the low end of observed values. On the IA-32/Elan 3 cluster, varying buffer
alignment exhibits relatively little impact, only up to a maximum performance loss
of only 2.3% of the peak bandwdith. However, as both Figures 3(b) and 4(b) clearly
show, the performance-degradation pattern of the misaligned buffers recurs every
64 bytes and not in multiples of the page size as one might suspect. This 64-byte
performance cycle is apparently a characteristic of the QsNet network. Communica-
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Listing 4. coNCePTuaL memory-alignment test (Part 2 of 3: misaligned sender)

19 # Test the e f f e c t s o f keeping the r e c e i v e b u f f e r page a l i gned
wh i l e vary ing the misal ignment o f the send bu f f e r .

20 a l l tasks touch a 10 megabyte memory region then
21 a l l tasks synchronize then
22 task 0 resets i t s counters then
23 for reps repetitions
24 {
25 task 1 receives a msgs ize byte page aligned message from task 0

then
26 task 0 sends a msgs ize byte al ignment byte misaligned message

to unsuspecting task 1 then
27 task 0 receives a msgs ize byte page aligned message from task 1

then
28 task 1 sends a msgs ize byte al ignment byte misaligned message

to unsuspecting task 0
29 }
30 then task 0 logs ( msgs ize ∗ reps ∗2) / e lapsed_usecs as " misa l i gned BW

(B/us ) " then

Listing 5. coNCePTuaL memory-alignment test (Part 3 of 3: misaligned receiver)

31 # Test the e f f e c t s o f keeping the send bu f f e r page−a l i gned wh i l e
vary ing the misal ignment o f the r e c e i v e b u f f e r .

32 a l l tasks touch a 10 megabyte memory region then
33 a l l tasks synchronize then
34 task 0 resets i t s counters then
35 for reps repetitions
36 {
37 task 1 receives a msgs ize byte al ignment byte misaligned

message from task 0 then
38 task 0 sends a msgs ize byte page aligned message to

unsuspecting task 1 then
39 task 0 receives a msgs ize byte al ignment byte misaligned

message from task 1 then
40 task 1 sends a msgs ize byte page aligned message to

unsuspecting task 0
41 }
42 then task 0 logs ( msgs ize ∗ reps ∗2) / e lapsed_usecs as " misa l i gned BW

( sender page−a l i gned ) (B/us ) "
43 }

tion in QsNet is based on a hardware RDMA “put” primitive. An implementation
artifact of QsNet’s data-prefetching algorithm—which is necessarily cognizant of
the virtual memory addresses on both ends of the transmission—is causing the
observed sensitivity of performance to buffer alignment.

3.2. The significance of relative alignment

One important observation to make for Figures 3 and 4 is that when the send
and receive buffers are aligned equally in memory (i.e., each to a multiple of the
number shown on the x axis) performance is consistently poor. This observation
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Fig. 3. Alignment results for the IA-64/Elan 3 cluster
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Fig. 4. Alignment results for the IA-32/Elan 3 cluster

leads one to wonder if good performance depends upon the relative alignment of
the send and receive buffers to each other. Figures 3–4 demonstrate that good
performance can be achieved when one buffer is page-aligned and the other is offset
from a page boundary but is the impact on performance in fact a function of the
difference in alignment between the two buffers?

To answer that question, we devised another special-purpose performance test
using coNCePTuaL. Listing 6 presents the complete coNCePTuaL source code
for a ping-pong bandwidth test that aligns the receive buffer alignment bytes past a
page boundary and the send buffer {alignment + misalignment} bytes past a page
boundary. We ran this new performance test on the IA-64/Elan 3 cluster using
misalignment values of 8 bytes and 56 bytes. The numbers 8 and 56 were selected
because Figure 3 displays a peak every time the send buffer is 8 bytes (modulo 64)
ahead of the page-aligned receive buffer and a valley every time the send buffer
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Listing 6. coNCePTuaL test of relative buffer alignment

1 reps i s "Number o f r e p e t i t i o n s " and comes from "−−r e p e t i t i o n s " or "
−r " with default 1000 .

2

3 maxalign i s "Maximum s t a r t i n g al ignment to t e s t with in bytes " and
comes from "−−maxalign" or "−m" with default 16K.

4

5 msgs ize i s " S i z e o f message to t e s t with" and comes from "−−s i z e "
or "−s " with default 1M.

6

7 misal ignment i s " Re la t i v e misal ignment to t e s t with in bytes " and
comes from "−−misa l i gn " or "−g" with default 8 .

8

9 For each al ignment in {0 , 4 , 8 , . . . , maxalign}
10 {
11 a l l tasks synchronize then
12 task 0 resets i t s counters then
13 for reps repetitions
14 {
15 task 0 sends a msgs ize byte al ignment+misal ignment byte

misaligned message to task 1 who receives i t as an
al ignment byte misaligned message then

16 task 1 sends a msgs ize byte al ignment+misal ignment byte
misaligned message to task 0 who receives i t as an
al ignment byte misaligned message

17 }
18 then task 0 logs al ignment as "Alignment (B) " and ( msgs ize ∗ reps

∗2) / e lapsed_usecs as "Bandwidth (B/us ) "
19 }

is 56 bytes (modulo 64) ahead of the page-aligned receive buffer. Figure 5 clearly
shows that performance on the IA-64/Elan 3 cluster is sensitive only to the relative
distance between the send and receive buffers modulo the page size; the absolute
alignment relative to a page boundary is inconsequential. Although Figure 5 plots
the results only out to 256 bytes the straight-line pattern continues at least to
16,384 bytes, which is the IA-64 page size.

The data confirm that the Elan 3 network performs best when the send buffer
lies a number of full pages plus 8 bytes ahead of the corresponding receive buffer and
performs worst when the send buffer lies a number of full pages minus 8 bytes ahead
of the corresponding receive buffer. To determine if this performance characteristic
explains the performance discrepancy observed in Section 2 we ran the C and coN-
CePTuaL versions of the original ping-pong bandwidth test within a debugger
and dumped the virtual memory addresses of the send and receive buffers used for
transmitting 1MB messages. Sure enough, on the IA-64/Elan 3 cluster the C ver-
sion happened to allocate the receive buffer at virtual address 6000000000BA3890hex

and the send buffer at virtual address 6000000000CA38A0hex—a “good” difference of
the send buffer being 1 MB + 16B ahead of the receive buffer. (The extra 16 bytes
represents two 64-bit integers’ worth of malloc() housekeeping information.) The
coNCePTuaL version, which by default shares buffers across non-concurrent op-
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Fig. 5. Variable receive-buffer address, fixed relative offset of send buffer (IA-64/Elan 3 cluster)

erations, allocated both buffers at virtual address 6000000000BBC6F0hex. This rep-
resents a “bad” difference of 0B. We can therefore conclude that the performance
discrepancy presented in Section 2 was, in fact, caused by the relative alignment
of the send and receive buffers. Recall that we also observed in Section 2 that
swapping the order of the malloc() calls in Listing 2 degraded performance. As
we now know, allocating the send buffer before allocating the receive buffer places
the receiver at a “bad” offset of 1MB + 16B ahead of the sender.

3.3. Other Networks

Having quantified the alignments that result in good and bad performance on Qs-
Net we chose to expand our study to other high-speed interconnects. The following
paragraphs present and explain the results we took on Quadrics’s QsNetII (Elan 4/
Elite 4) [10], Mellanox’s InfiniBand 4X [11] implementation, Myricom’s Myrinet-
2000 [12], and Broadcom’s Gigabit Ethernet [13] implementation (NetXtreme
BCM5701 cards).

QsNetII Figure 6 shows that the x86-64/Elan 4 cluster (described in Table 1)
performs poorly when the send and receive buffers are page-aligned but performs
well for any other alignment and with negligible variation. However, further in-
vestigation revealed that the initial performance drop is an artifact not related to
buffer alignment. On the QsNetII, a message that is allocated but not initialized
exacts a severe performance penalty (∼2.5 s for a 1MB message) when first accessed
because of the way the network interface demand-pages virtual memory from the
host. Re-running the x86-64/Elan 4 experiment in the reverse order, from largest to
smallest alignment, penalized the first alignment tested and returned a bandwidth
of 864 B/µs for the 0 B misalignment cases.

A possible explanation of why the IA-32/Elan 3 and x86-64/Elan 4 clusters are
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Fig. 6. Alignment test results for the x86-64/Elan 4 cluster

largely unaffected by buffer alignment but the IA-64/Elan 3 cluster is sensitive to
it involves the matching between the I/O bus and network card. The IA-32/Elan 3
cluster runs a PCI network card on a PCI bus; the x86-64/Elan 4 cluster runs
a PCI-X network card on a PCI-X bus; but, the IA-64/Elan 3 cluster runs a PCI
network card on a PCI-X bus (specifically, the one in Hewlett-Packard’s zx1 chipset).
We believe that the PCI/PCI-X interface on the IA-64/Elan 3 cluster exaggerates
the QsNet’s sensitivity to buffer alignment although the exact reason why this
occurs needs to be investigated further.

InfiniBand The IA-32/IBA cluster (described in Table 1), which is intercon-
nected using Mellanox’s InfiniBand 4X [11] implementation, is highly sensitive to
message-buffer alignment. As Figure 7 shows, based on how the send and receive
buffers are aligned, performance can drop over 25% from the peak measured perfor-
mance of 668 B/µs to a low of 496 B/µs. However, the IA-32/IBA cluster favors
different alignments from the also-sensitive IA-64/Elan 3 cluster. On the IA-32/IBA
cluster, the receive buffer’s misalignment is largely inconsequential; performance is
determined primarily (but not completely; cf. the Equally aligned curve) by the
send buffer’s misalignment relative to a page boundary. Furthermore, performance
depends heavily on which multiple of a 4-byte boundary the send buffer is aligned to.
Even multiples (i.e., receive-buffer address + 8 bytes, + 16 bytes, + 24 bytes, etc.)
result in almost 100 B/µs better performance than odd multiples (i.e., receive-buffer
address + 4 bytes, + 12 bytes, + 20 bytes, etc.)—an average of 607 B/µs vs. an av-
erage of only 509 B/µs. Although the exact values appear erratic in Figure 7(b),
by extending the x axis, Figure 7(c) shows that the Send buffer misaligned curve
repeats a pattern every 1024 bytes.

Myrinet The IA-32/Myri cluster, interconnected using Myricom’s Myrinet [12]
network exhibits essentially the same bandwidth regardless of buffers alignment

http://www.hp.com/products1/itanium/chipset/2-way_block.html
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Fig. 7. Alignment test results for the IA-32/IBA cluster

(Figure 8). Although Figure 8(b) indicates that regular alignment effects are ex-
hibited when the receive buffer is page-aligned and the send buffer is relatively
misaligned, these account for a performance loss of under 1% of the measured peak
performance. The downward spikes in Figure 8(b) are probably caused by inter-
ference from other users—the IA-32/Myri cluster was running in only a partially
dedicated mode—and are unlikely to be significant.

Gigabit Ethernet As a final comparison, the alignment test was also run over
the Gigabit Ethernet network [13] in the IA-64/GigE cluster. (As indicated by
Table 1, the IA-64/GigE cluster is the same cluster as the IA-64/Elan 3 cluster; it
simply has both a QsNet network and a Gigabit Ethernet network.) What makes the
IA-64/GigE configuration worth investigating is that MPI runs over the heavyweight
TCP/IP protocol instead of bypassing the operating system as it does in all of
the other configurations we tested. Figure 9 shows that the IA-64/GigE cluster
observes little performance variance even though the QsNetII network in the same
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Fig. 9. Alignment test results for Gigabit Ethernet

cluster is highly sensitive to message-buffer alignment. The detail view presented
by Figure 9(b) does indicate that when the send and receive buffers are aligned
equally relative to a page boundary, performance is consistently worse than when
the two are relatively misaligned. However, this difference accounts for a loss of less
than 2% of the measured peak bandwidth.

Although the effect is slight, page-aligned receive buffers/misaligned send buffers
do outperform page-aligned send buffers/misaligned receive buffers—the opposite
of what was observed on the IA-32/IBA cluster. As with Figure 7, we extended the
curves shown in Figure 9 out to 16,384 bytes but in this case did not observe any
periodic behavior.
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4. Related Work

While we are unaware of any prior work that specifically examines the effects of
buffer alignment on network performance, the closest study to ours in spirit involves
a series of tests performed with NetPIPE [3]. Like coNCePTuaL, NetPIPE is de-
signed to test network performance; and, like coNCePTuaL, it is separated into
a messaging-layer-independent part and a messaging-layer-dependent part. How-
ever, coNCePTuaL is designed to be a general-purpose testing framework while
NetPIPE is specialized to a predefined set of tests. Using NetPIPE, Snell et al. [3]
discovered a discrepancy in network performance caused by buffer alignment. When
running TCP/IP over an ATM network, the bandwidth of unaligned messages (not
explained in Snell et al.’s paper beyond implying “not page-aligned”) is poor for
only a particular range of message sizes while page-aligned messages perform well
in that same range of sizes. In contrast, we observed that—on a different set of
networks, admittedly—performance can be more sensitive to the relative alignment
of the send and receive buffers on a node and that page-aligned buffers sometimes
result in worst-case performance.

5. Future Work

Although this paper presents the effects of buffer alignment on various platforms,
the precise causes of these effects are still unknown. Some possible sources include
the network interface’s architecture or implementation, memory and I/O bus inter-
actions, and artifacts of the various messaging layers. An important follow-on study
would be to isolate each of those components in turn in an attempt to identify the
sources of communication performance’s sensitivity to buffer alignment.

A related investigation is to extend our study to more tightly coupled parallel
computers. Such systems may include special-purpose communication hardware
(e.g., bulk-transfer engines) which can be a source of alignment sensitivity.

A final avenue for future research would be to design and implement a tool which,
given the output from an alignment test running on a particular cluster, would
optimize an application’s communication buffers to ensure optimal performance.
Such a tool could become an integral part of the software optimization process,
especially on platforms known to be highly susceptible to alignment effects.

6. Conclusions

It is widely known that the alignment of message buffers can affect communica-
tion performance. However, the data presented in this paper contradict the notion
that page-aligned buffers yield optimal performance. In fact, we have shown that
different networks and node architectures favor different buffer alignments. On
some clusters, page-aligned buffers make a simple ping-pong performance test re-
port its worst performance. In most cases, the best performance is achieved only
when either the send buffer or the receive buffer is offset from a page boundary,
although the amount differs from cluster to cluster. Table 2 summarizes the impact
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of message-buffer alignment on ping-pong bandwidth.b As shown by that table,
the impact can be significant—up to a 25.8% loss in performance on the IA-32/IBA
cluster from the most to the least favorable buffer alignment.

It would be worthwhile for an alignment test such as the one proposed in this
paper to be integrated into existing network performance tests such as the Pallas
MPI Benchmarks [1] or SKaMPI [2]. Knowing ahead of time how much of a factor
alignment can play in network performance would lead to better predictions of appli-
cation performance and can prove useful in tracking down performance anomalies.

In short, the interplay of cluster architecture and message-buffer alignment is
critical to understanding communication performance. The results presented in
this paper indicate that expressing communication performance as a function of
message-buffer alignment and cluster architecture is a requirement for deriving re-
alistic expectations of a network’s delivered performance.

The coNCePTuaL software package used throughout the course of this case
study is freely available from http://conceptual.sourceforge.net/.

Table 2. Summary of performance as a function of buffer alignment

Cluster Best perf. Worst perf. ∆%
B/µs Pattern B/µs Pattern

IA-64/Elan 3 216.2 S ≡ R + 16 (mod 64) 180.3 S ≡ R (mod 64) 16.6
IA-32/Elan 3 324.3 S ≡ R + 16 (mod 64) 317.0 S ≡ R (mod 64) 2.3
x86-64/Elan 4 865.0 No pattern 278.9 S, R page-aligned 67.8

865.0 No pattern 863.3 No pattern 0.2
IA-32/IBA 668.4 S ≡ 256 (mod 1K) 495.8 S ≡ 468 (mod 1K) 25.8
IA-32/Myri 107.9 S ≡ 4 (mod 32) 107.1 S ≡ 12 (mod 32) 0.7
IA-64/GigE 102.9 R ≡ 0 (mod 16K) 99.5 S ≡ R (mod 16K) ∧ 3.3

R 6≡ 0 (mod 16K)
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